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Introduction

Athletes’ performances improve, peak, and eventually decline. This curve is called the “age curve” and we expect this curve

to have heterogeneity with respect to the characteristics of the players. In this work, we focus on estimating the effect of

rest between games on performance for each age. This is helpful for making decisions about resting a player and so-called

“load management”. We make three main contributions: First, we construct a Conditional Expectation Function (CEF) to

compare the age curve for different covariates and treatments. Second, using a causal inference approach, we propose

a methodology to construct age conditioned treatment effect (ACTE) for a given treatment. The ACTE can test causal

hypotheses for each age on the treatment and outcomes of interest. Third, we apply this method to assess the effect of

days between games on multiple performance metrics conditional on age.

Notation, Framework, and Estimands

We assume a superpopulation or distribution P where we draw N independent tuples (Yi, Ai, Wi, Xi) ∼ P where Y is the

observed outcome of interest, A ∈ Z is the age, W ∈ {0, 1} is the binary treatment of interest, and X ∈ X is the covariate

matrix. Under Rubin’s potential outcome framework [2] the Conditional Expectation Function (CFE) for a given age a is

defined as

µ0(a, x) := E[Y (0)|A = a, X = x] and µ1(a, x) := E[Y (1)|A = a, X = x]

In this work, our objective is not only the prediction but we have a strong belief that age is a driving factor to model Y (w)
so we decompose and assume that

Yi(w) = g(a, w) + fi(x, a, w) + εi (1)

following [3] where g(t) is the average performance at age t for all players with treatment w, f (x, a, w) represents a possible
performance adjustment at age a for player with covariates x, and treatment w, and ε is the mean zero model error. Note

that under this decomposition, g is the representation of all players and hence f represents the variation for all players at

age a. Namely, E[f (x, a, w)|A = a] = 0
Under this framework, note that

τ (a) := E[Y (1) − Y (0)|A = a]
= E[g(a, 1) − g(a, 0) + f (x, a, 1) − f (x, a, 0)|A = a]
= E[g(a, 1) − g(a, 0)|A = a]

which indicates that:

τ (a) := E[g(a, 1) − g(a, 0)|A = a] (2)

In order to properly identify this estimand we need the following assumptions:

Probabilistic Assignment: The assignment probability is strictly between 0 and 1

0 < P(Wi = 1|Xi, Yi(0), Yi(1)) < 1
Consistency: There is only one version of the potential outcome for each w

Y obs
i = Yi(wi)

No interference: The treatment status of other players would not affect your outcome.

Yi(W) = Yi(Wi)
Unconfoundedness: There are no unmeasured factors affecting the probability of treatment allocation and the outcome.

(Yi(0), Yi(1)) ⊥⊥ Wi|Xi

Theorem 1(Identification of ACTE) Under above assumptions we have

τ (a) = EX [E[Y |W = 1] − E[Y |W = 0]|A = a, X = x]

S,T,X-learnerwith Splines

‘ S-learner is one of the causal ML meta-algorithms introduced by [1]. It is referred to as the S-learner because it uses

a ”single” estimator. In this learner, the treatment is included as one of the covariate and we learn the ĝ using the next

formulation

g(a, 0) := E[Y (0)|A = a, W = 0, X = x] and g(a, 1) := E[Y (1)|A = a, W = 1, X = x]

then

τ̂ (a) = ĝ(a, 1) − ĝ(a, 0)

T-learner uses ”two” learners to estimate the τ . As first step, we learn ĝ0(a) and ĝ1(a) separately for treatment and control

using the next set up

µ0(a) = E[Y (0)|A = a, X = x], and µ1(a) = E[Y (1)|A = a, X = x]

Then, the ACTE for each age and covariates is estimated by

τ̂ (a) = ĝ1(a) − ĝ0(a)

X-learner consists of two-steps. As first step, we estimate two learners for treatment and control as in T-learner to obtain

ĝ1(a) and ĝ0(a). For the second step, we calculate the ”bias” using the model we trained in step one and feed the data set

that we did not use to train.

D̃1 = Y 1 − ĝ0(a) and D̃0 = ĝ1(a) − Y 0

Then, we use age spline regressions to estimate τ0(a) = E[D̃1|A = a, X = x] and τ1(a, x) = E[D̃0|A = a, X = x] and call

its estimates τ̂0(a) and τ̂1(a).

Finally, the ACTE for each age and covariates is estimated by

τ̂ (a) = e(a)τ̂0(a) + (1 − e(a))τ̂1(a)
where e ∈ [0, 1] is a weight function. Typically, we use the propensity score.

The advantage of S-learner is that the curve constructed by this approach is smooth and easier to interpret than X-learner.

However, X-learner can handle more complex ACTE functions and treatment imbalance.

To estimate µ, we could use any base learner on the entire dataset. In particular, we will use the age spline regression

method as described in [3] as our base learner and we will compare the result with random forest.

Simulation study

We realized three different simulation studies to assess which method we should use for ACTE estimation. The first

scenario is the simplest one given by

1. Simulation1 (Simple, constant treatment):

τ (a) = 2

f (x, a, w) = γi + bi(a − amax)21(a > amax)

2. Simulation2 (Simple, linear treatment):

τ (a) = 0.1(a − amin)

f (x, a, w) = γi + bi(a − amax)21(a > amax)

3. Simulation3 (Complex, non-linear treatment):

τ (a) = 2(a − 16) + 0.0005 ∗ 1(a > 20) ∗ (a − amax)3 − 0.0005 ∗ 1(a > amax) ∗ (a − amax)4

f (x, a, w) = γi + bi(a − amax)21(a > amax) + (2 + 3w)xi

where g(a, w) = ω + β1(a − amax)2 + β2(a − amax)21(a > amax) + β3(a − amax)31(y > tmax) + τ (a)w, γi and bi are mean

zero normal distributions and other constant is from [3]. Recall that Yi(w) = g(a, w) + fi(x, a, w) + εi
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Figure 1. Simulation Scenarios

In the table 1 we can observe that the best method depends on each cases. If the treatment effect is complex then the

X-learner with random forest would perform the best but if it is simple and treatment and control group have similar trend,

S-learner with splines would be the best method. Researcher should make an appropriate assumptions before hand and

decide carefully which model to use. In the real-world applications, by the fundamental problem of causal inference, we

never can observe the counterfactual so we cannot calculate the MSE.
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Figure 2. Simulation Results

Model simulation1 simulation2 simulation3

s.ols 0.00 0.44 89.23

t.ols 1.53 1.44 9.40

x.ols 1.53 1.44 9.40

s.rf 0.35 0.29 9.90

t.rf 0.05 0.07 4.17

x.rf 0.07 0.08 3.74

Table 1. MSE for ACTE estimation

Application to NBA data: Assessing load-management in sports

Using 10 seasons (2011-2022) of NBA data, we apply the above methods to estimate the effect of days of rest and age

on points per 100 possessions played for NBA players. The treatment w = 0 indicates back-to-back (b2b) games and

w = 1 indicates 1+day(s) rest, Y (w) is the potential outcome when treatment is w, and X would be the covariate matrix.

Then µw(a, x) indicates the conditional expectation of the potential outcome Y (w) given age a. This function allows us to

construct the age curve. By using τ (a, x), we get the ACTE, which is the effect of resting over playing b2b games given age.

As this is an observational study, we might not be able to remove entirely the confounders but we will control the model

using player, team, team against, home-away indicator, and season fixed effect.

Results: S-learner/Splines

Figure 3. S-learner/Splines

The results of the S-learner can be observed in Figure 3. For net rating, we observe that b2b worsens the performance

and moreover, the difference between the two curves increases as the player gets older.

We show the other metrics on the left. Points/100 poss. for ages considered as players’ ”peak” they successfully score

without resting but for older ages, the scoring ability decreases faster. For rebounds, we observe that the scale is very

small and we can conclude that there is a small difference between the two curves. Assists are interesting as players’ do

better for consecutive games. We believe that this happens as passing requires less physicality than scoring, an old player

who played the game the day before might prefer passing rather than scoring due to fatigue. Resting is consistently better

for steals and young players have higher steals per possession.

We believe the curve has a fitting problem for blocks as more than 60% of the players have 0 blocks. We could improve by

fitting a Poisson regression instead of using the Gaussian link. Younger players make more turnovers and as they age, they

tend to commit more turnovers in b2b games.

Results: X-learner/Splines

In Figure 4, we can observe the result of the X-learner using spline regressions.

On the left, we can observe the ACTE for each per 100 possessions variables. We can spot that points per 100 possessions

are the most affected statistics using X-learner/Spline method. We are aware that the scaling for each of these variables

might not be the same but for other outcomes except for points, the effect is marginal.

On the right, we observe that the net and offensive ratings have increasing trends. And the defensive rating is flat. We can

observe that resting would affect offense more than defensive rating. Overall, the net rating improves and we notice that

it is coming from the improvement in the offensive rating.

Figure 4. X-learners /Splines

Discussion

In this work, we connected the age curve with the causal ML literature in this work. We applied this to NBA data to assess

players’ performance changes in b2b games. This framework can be applied in numerous settings to determine the hidden

causality in the data. Although we used the model that best performed on [3] where they explored different techniques to

account for this bias, we would like to solve from an instrumental variable perspective by trying to estimate the Survival

Average Causal effect (SACE) using principal stratification.
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