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Introduction

Causal inference under network interference is an emerging topic as network data

is ubiquitous across multiple disciplines. We say that the treatment effect ’spills

over’ to other units when one’s potential outcomes are affected by the treatment

status of other units. Such a phenomenon is often due to social or physical

interactions and depends on the population’s social structure. An intervention that

alters social connectivitywould alter the interferencemechanism and consequently,

the spillover effect. Current methods under interference estimate causal effects

conditional on a known and fixed social connectivity graph. [1] [3]

On the other hand, epidemic models have been used to predict the effect of hypo-

thetical interventions altering social connectivity parameters to control the spread

of infectious diseases. However, a formal and general definition of the causal

effects of such interventions altering the social structure is lacking. We consider

a stochastic network formation and propose causal estimands to represent the

effects of modifying the network formation mechanism. These causal estimands

are defined under interventions shifting the degree distribution or, in general, the

network formation mechanism. We develop estimators for the counterfactual

estimands under hypothetical interventions altering the network structure, and

we investigate these estimators’ finite sample bias and large-sample properties.

Goals

Develop causal estimands under the potential outcome framework to define

the causal effects of changes in social connectivity under interference

Develop semi-parametric unbiased estimators for these quantities and

investigate their finite sample and large sample properties.

Provide a realistic simulation study to get an insight into how this framework is

useful.

Motivation

An example of the application of this framework is to evaluate the efficacy of a

stay-at-home policy as a means of controlling the spread of infection during an

epidemiological outbreak and vaccine coverage. Spillover effects of vaccination

depend on the social connectivity, which will be affected by state-at-home policies.

To assess the effectiveness of the policy, we will compare a specific parameter

that captures the propensity for social connectivity under different scenarios. We

will visualize the effects of varying this parameter.

In Figure 1, the color of each node represents its infection status with a specific

disease. The simulation was designed to reflect the influence of the individual

treatment status and the number of unvaccinated neighbors on the infection

status. We can observe that a sparser social connectivity pattern results in a lower

infection rate.
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Figure 1. (a) Sparser Network, (b) Denser Network

Notation, Estimands, and Estimators

Consider undirected network (N , A) where N is a set of nodes or units {1, ..., N}
and A ∈ RN×N an adjacency matrix where Aij ∈ {0, 1} indicates whether the unit

i and j are connected. Assume that A is generated by a network formation model

PΘ(A = a|X) that maps the covariate matrix X ∈ RN×p to the adjacency matrix

A with parameter Θ. Additionally, denote the treatment assignment W ∈ {0, 1}N

with assignment mechanism P(W = w|X).

Using exposure mapping function g : {0, 1}N−1 × {0, 1}
(N

2
)

→ Rl where l ∈ Z+

we assume the following general form of interference:

Yi(Wi, g(W−i, A)) = Yi(Wi, g(WSi
, A))

where Si = νi(A) is the interference set as a function of A. For example, νi(A) =
{j : Aij = 1} indicates Si is the set of the first-order neighbours.

g(·) is also a function of A because we can create weights of WSi
from the

adjacency matrix. Denote Gi = g(WSi
, A). We can denote the potential

outcome by Yi(w, g), where g ∈ Rl.

Now we define the causal estimand of interest. First, define the hypothetical

distribution of the exposure as follows:

πHP (g; Θ|X) = PA,W (Gi = g; Θ|X)
=
∑
si

∑
w

1(g(wsi, a) = g, νi(a) = si)PA(A = a; Θ|X)PW (W−i = w|X)

where PA(A = a; Θ|X) is a network generation model and Θ is a parameter of

this model (e.g., the probability of creating a link), which will affect the degree

distribution, and in turn Gi.

Then the marginal potential outcome of interest is

Y (w, Θ) = 1
N

N∑
i=1

∑
g

Yi(w, g)πHP (g; Θ|X)

and the causal estimands of interest are:

Direct effect: effect of receiving the treatment in the same network,

DE(Θ) = Y (1, Θ) − Y (0, Θ)
Network intervention effect: effects on a unit’s outcome of modifying the

network structure, NIE(w, Θ, Θ′) = Y (w, Θ) − Y (w, Θ′)
Then the IPW estimators for this estimand for the true network parameter Θ∗

would be

Estimator for the hypothetical network

Ŷ HP (w, ΘHP ; Θ∗) = 1
N

N∑
i=1

πHP (g; ΘHP |X)1(Wi = w)Y obs
i

PΘ∗(Gi = g(Wobs
Si

, Aobs)|X)P(Wi = w|X)

Using the latter estimator we could study the DE and NIE for a hypothetical

network

Estimated direct effect

D̂E(Θ) = Ŷ HP (1, Θ; Θ∗) − Ŷ HP (0, Θ; Θ∗)
Estimated network intervention effect

N̂IE(w, Θ, Θ′) = Ŷ HP (w, Θ; Θ∗) − Ŷ HP (w, Θ′; Θ∗)

Simulation framework

To get an idea of the performance of our estimators we performed the next

simulation for 10 units:

The potential outcome function is

Y (w, g) = 1(σ(−7w + 4g + (1 − w)g − 5) > 0.5)) where sigma is the logistic

function where Y (w, g) represents the status of getting infected with a specific

disease and w represents the treatment status of the unit i, and g is the

number of untreated units.

A is generated from SBM with Θ∗ =
[
θ11 θ12
θ12 θ22

]
=
[
0.6 0.4
0.4 0.7

]
Wi follows the Bernoulli distribution with rate p∗ = 0.5.

Simulation result

In this section, we examine the changes in causal estimands of interest for a

hypothetical network structure, denoted by θHP
ij = min(rθ∗

ij, 1) ∀i, j ∈ 1, 2. Here,
r represents the percentage of network connectivity change, where r = 0.9 implies

a 10% reduction in social connectivity pattern relative to Θ∗. Figure 2 illustrates

the direct effect and network intervention effect for each value of r, along with
the respective 5% and 95% quantiles on a 5, 000 Monte Carlo simulation. The two

black dashed lines represent the true value of the estimand for the given r value.
We selected a grid of r values such that ΘHP starts with θHP

ij = 0 ∀i, j ∈ 1, 2
and ends with θHP

ij = 1 ∀i, j ∈ 1, 2.
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Figure 2. Direct effect and Network Intervention effect (a) Direct Effect, (b) Network Intervention

Effect

We can see that the solid black line for DE and solid lines for the NIE overlaps

with the corresponding Monte Carlo estimates, indicating that the estimator is

unbiased, as expected. For the direct effect, we observe that as we increase the

level of social connection, the interference sets also become larger, leading to

greater uncertainty in the treatment effect.

On the right-hand side, we can see how the network intervention effect changes

as we vary the hypothetical social connectivity pattern. As the hypothetical

parameter moves farther from the true value, we observe an increase in

uncertainty.

Network interference in observational studies

In observational studies, causal inference under interference is challenging as

the traditional unconfoundedness assumption must be relaxed to account for

treatment and covariates of neighboring units to ensure the validity of the inference

and accurate identification of causal effects. [2] Furthermore, in addition to

the propensity score estimation, we need to make an inference on the network

formation model.

Namely, we need to estimate Θ̂∗ itself and calculate D̂E(Θ̂∗) and

N̂IE(w, ΘHP , Θ̂∗). Then, we will examine the bias of our estimators by

comparing |Ŷ HP (w, ΘHP ; Θ̂∗) − Y (w, ΘHP )|. To achieve this, we estimate Θ∗

and p∗ using Maximum Likelihood Estimation (MLE) and substitute them into our

proposed estimator. This allows us to analyze the resulting bias.

Simulation Results for unknown Θ∗ and p∗

Simulation study when we estimate both Θ∗ and p∗ using Maximum-likelihood-

estimation (MLE). In figure 3, |Ŷ HP (w, ΘHP ; Θ̂∗) − Y (w, ΘHP )| for each hypothet-

ical hyperparameter θHP
ij = min(rθ∗

ij, 1) ∀i, j ∈ 1, 2
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Figure 3. Bias when we estimate Θ∗ and p∗ using MLE

We can observe that the bias increases when the hypothetical parameter is further

from the truth.

Discussion/Future work

In this work, we have introduced a framework aimed at estimating the impact of

modifying the social connectivity pattern. This framework holds significant value

for policymakers as it assists them in determining the extent to which they should

restrict social connectivity to maintain a low infection rate.

In future research, we will evaluate the performance of our estimator by exam-

ining its asymptotic behavior and convergence rate. Moreover, we will focus on

developing an estimator for the variance, considering that Monte Carlo variance

is not feasible with real-world data.
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